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ABSTRACT 

A computer model for isolated disks of stars is described. The evolution of disks of 
stars is investigated by following the self-consistent motion of large numbers of point 
masses as they move in the plane of the disk. Two methods for obtaining the gravitational 
potential are used. In one method the gravitational potential is obtained by summing 
directly the l/r contribution from groups of stars and in the other method Fourier trans- 
form techniques are used. The behavior of the model has been compared for the two 
methods by studying the results for the particular case of an initially balanced uniformly 
rotating disk. Such a system is unstable and breaks up into a number of subsystems 
during the first rotation. The effect of varying the discretization parameters has been 
studied. The maximum mesh size used was 128 x 128 and the largest number of stars 
used was 200,000. 

Most of the reported work on the computer simulation of a galaxy of stars has 
represented the galaxy as a collection of infinitely long rod-like stars [l-5]. This 
approximation leads to a completely two-dimensional problem which considerably 
simplifies the field calculation. However, there are very few galaxies for which a 
rod-like approximation is likely to be valid (perhaps the cigar-shaped galaxy 
NGC 2685 would be one of these), and the results obtained with such a model, while 
interesting in their own right, must be viewed with considerable caution when they 
are used to study problems of galactic structure in actual disk-like spiral galaxies. 

The stars that take part in the spiral structure of a galaxy lie in a thin ellipsoid 
with an axis ratio of 20 : 1. A very good approximation to such a system is to treat 
it as an infinitesimally thin disk made up of point stars confined to motion in a 
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&u-re. ‘Much theoretical analysis has been done on the stability of such systems 
26-I 11. However the computer simulation of the thin disk has so far been confined 
to infinite doubly-periodic systems of disks [12j or to a very small number of 
interacting stars [13--141. Neither of these systems is very realistic. 

We describe in this paper a new computer model which has been used to simulsre 
an isolated disk-like galaxy of between 50,000 and 200,000 point stars moving in the 
plane of the disk. Two techniques of calculating the potential are used-one using 
direct summation and the other Fourier transform techniques. Both methods have 
been extensively tested by applying them to the simulation of the evolution of A 
uniformly rotating disk with an initial rotation just sufficient ta balance the 
gravitational force. This system is found to be unstable in agreement with the 
theoretical results of Hunter [6] and Julian and Toomre [7.9!. The dependence of 

- results on the discretization parameters of the model is discussed. 

In the computer model of the galaxy we store the positions and velocities of a. 
large number of model “stars” and advance their coordinates stepwise in time 
according to Newton’s iavvs of motion and Newton’s law of gravitation, the forre 
on each star being obtained from the gravitational potential of the galaxy. 

For the purposes of the potential calculation a square region-called the grid-- 
is taken which surrounds the galaxy and this is divided into a square array of 
cells (typically 64 x 64 or 128 x 128). At the center of each ceh there exists a 
mesh point at which the gravitational potential is calculated. Most. and hopefully 
all. of the stars of the galaxy will remain within the grid. in which case they wil’, 
interact with each other correctly via the gravitational potential. If, however. small 
numbers of stars do escape, their orbits are separately calculated on the assumption 
that they interact only with the stars which remain in the grid-these stars being 
assumed to be at the center of the grid. Thus, stars outside the grid do not i.ltorac; 
among themselves but they do interact in this simple zvay with the main bodq’ of the 
galaxy. With this approximation galactic features orbiting near the edge of the 
grid may be seen to leave the grid and reenter with little or no change in shape. This 
stratagem. originally used by Hohl. enables the galaxy to fill a much larger kaction 
of the grid than would be possible if escaping particles were discarded. 

At the beginning of a timestep the coordinates am j:(i). k.L’-Y;?‘. $‘i*-fiT:“’ are 
available in the computer storage for each star. The timestep c& [eq”;f-i L>T then 
proceeds as follows: 
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(i) Mass distribution.-The positions of the stars are examined in turn and the 
mass, HZ, of each star is added to the mass associated with the mesh point at the 
center of the cell in which the star resides. In this way a mass distribution )R,,, is 
accumulated on the mesh points. Stars lying outside the grid do not contribute. 

(ii) Potential calculation.-The mass distribution on the mesh points is converted 
to a potential distribution on the same mesh points. The method of calculation is a 
key part of the simulation and is described below. The potential at the (CI, b) mesh 
point is defined by 

(1) 

where X, =: pH etc. and His the distance between mesh points. m,,, is the mass 
associated with the (p, y)th mesh point and the summation is taken over all mesh 
points with the exception of the point (a, h). The potential is defined as a positive 
quantity for convenience; it is the negative of a potential energy per unit mass. 

(iii) Acceleration.-The coordinates of the stars are again examined and their 
positions and velocities are advanced. The force is assumed to be the same for all 
stars within the same cell and is calculated by the simplest central difference 
approximation. The force is assumed to be constant during the timestep DT. The 
differential equations being approximated are: 

For a star presently in the (p, q)th cell of the mesh the time-reversible difference 
approximations recommended by Buneman [15] are used: 

and 
y ftiw) 

- -sJf) = ~(f+LwZ) 

DT z 

and similarly for the y component. The coordinates are now available one timestep 
later and the cycle repeats again at step (i). 

The above approximations are the simplest that can be devised and lead to the 
fastest computer program. They are called by some authors [163 the NGP/ZSP 
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approximation (nearest grid point, zero sized particle). Refinements, us@ higher 
‘order difference approximations and various forms of interpolation. are possible 
and we use one of these, the cloud in cell (CIC) approximation 1161, for comparison 

purposes. However, these refinements seriously increase the cycle time of the calcu- 
lation so rhat fewer stars can be moved in a given. time. Since there is considerable 
premium on having a large number of stars in a gaiactic simulation we have 
preferred to use the simpler model. A large number of stars is desirabie first because 
a better description of the density distribution is obtained and second to provide 2 
good statistical measure of the stellar distribution function. 

In order to permit the storage of a large number of stars in rhe high speed core 
memory. al! the coordinates for a single star are packed in a single 60 binary digit 
word of the CDC 6600 computer. Fifteen binary digits are assigned to each coor- 
dinate. The positions, in units of H, are stored to 6 binary- places and the velocities. 
in units of H/!iDT? to 13 binary places. This allows a maximrnm velocity of -&Z celis 
per timestep and maximum position of 1256 cells. If values are computed exceeding 
these ;he maximum value is used, but this has not occurred iul any of the calcrdarions 
reported in this paper. Another method of packing employed was to pack one posi- 
tion and one velocity component in floating point in a single 60 bit isord. Thrs 
method effectively places no limits on the allowable magnitude of velocity and 
position but it requires twice the storage. 

If an asterisk denotes the quantity stored in the computer the foHowing scaling 
is advantageous: 

The mass distribution is obtained by adding the sceled mass nl* to a mesh point 
for each star, and the potential is obtained from the summation: 
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The equations of motion (3) then take the simple form: 

p ( ttm,‘aj 
c = V$-DT,‘2) + yl;+l,n - cp;-l,n ) 

C. Energy and ~fomentwn Conserilation 

The calculation of the kinetic energy in the model leads to little difficulty, 
provided one remembers that the kinetic energy must be calculated at the time, t, 
when the potential energy is available. Since the velocity is calculated only at the 
half timestep, interpolation is necessary and we have used, for the kinetic energy at 
the time t, the formula: 

where Vzi is the x-component of velocity of the ith star and the summation is taken 
over all the N stars. 

Since the velocity during the past and present timesteps is required this calcula- 
tion has to be done during stage (iii) of the timestep as the stars are 
being accelerated. 

The potential energy is calculated from the expression 

where 9)PE is an interpolated value of the potential at the position of the star. The 
negative sign is necessary because the potential is defined as the negative of a 
potential energy per unit mass. 

To be consistent with the definition of the force the potential of a star in the 
(i, j)th cell with coordinates x*, J* measu red from the center of the cell is 

Q)pE = q* + (Pi+13 - p?i-l,W + (%.i+1 - q%,&l)Y” 
2 2 

where gj* is an estimate for the potential at the center of the cell. We have found that 
taking v* equal to the potential at the mesh point, F~,~, gives too great a value for 
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the potential energy near the peaks in the potential. To obtain a better value 3~ 
must go back to the definition of potential energy as the work done by a lest s:~: 
as it moves From infinity to the mesh point in question, using always the force 
computed by the model in each cell. 

The worst case to consider is that of a single star at the origin. For mesh points 
far from the origin the work done will be very close to the T-: potential given at the 
mesh point, but for mesh points close to the origin large differences of up ;c! I2 
percent exist. 

One can shoL+ that for a test mass moving along the coordinate axes to the origin, 
the potential energy midway along the side of a cell boundary is the average of the 
potential values at the nearest two mesh points. One can also show that a good 
average value to take for the potential energy at the corner of a cell is the average 
of the potential at the four nearest mesh points. Final?y a good estimate for yX. ~hz 
potential energy at the center of the cell, is the average of the corner values and :he 
four values at the center of the sides. 

This leads to the following definition of q* 

where the average of the nearest four mesh points along the coordinate axes IE 

and the average of the nearest mesh points along the diagonal Is 

When Lhis averaging process is applied to the potential of a single star at ihc 
origin, the maximum difference between yPE and the work done by a test mass is 
reduced to two percent of the potential at the origin. 

With these definitions the total energy is constant to within 0.3 percent daring 
the first half rotation when the condensations are forming. This is quite a strir~~en:: 
test of energy conservation since, during this time. the change in kinetic ei:ergy a,d 
potential energy is 17 percent of the total energy and the density of stars increases 
onehundred fold. After this time some stars begin to leave the grid region asd the 
energy and momentum conservation checks can no longer be applied rigorous!!!. 

Linear momentum in the model is conserved exactly except for the eEeca.s of 
rounding error. It is conserved to better than five significaat figures when ;he star 
coordinates are packed with one or two floating point numbers per computer 
word. When packed as four fixed point numbers per word changes occur oC i;p ir: 
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0.1 percent of the momentum of stars travelling initially with a velocity component 
in the positive x direction. 

Angular momentum at the time t is defined by 

It is found to be constant to within 0.15 percent during the first half rotation. 

II. THE POTENTIAL CALCULATION 

Two methods are used to calculate the potential from the mass distribution by 
means of (I). The Fourier transform method was developed by Nockney and the 
summation method by Hohl. As used for the present calculation the Fourier method 
was about three times as fast but required 25 percent more computer storage than 
the summation method. 

A. Fourier Trunsform Method 

The potential is derived from the mass distribution by Fourier transform methods 
using the finite form of the convolution theorem, as a special case of the methods 
for an isolated system with an arbitrary force law given in reference 17. 

In order to deal with an isolated galaxy with a mass distribution given on the 
(n + 1) x (n + 1) points of a grid region defined by the active mesh 0 < p, 
q < n, it is necessary to carry out the calculation on the larger (212 x 2n) mesh, 
defined by 0 ,( p, q < 2n - 1. All quantities are repeated periodically outside 
the boundaries of the larger mesh. It turns out that we are only permitted to use 
one quarter of this for the mass distribution; the mass distribution on the remaining 
three quarters of the large mesh is defined to be zero. 

The relation (5) between the potential and the mass may be written 

where 
Fcsd = (c’ + d2)-lf2 

I 

0 \( c, d < IZ 
Fm--e,a = Fc,m--d = Fm-c.w-d = Fc,d c f d f 0 (7) 

and 
F,,, = 1. 



Fr.d is the potential at the mesh point (c, L!> due to a ~rn!t mass at Ihe origi!?. it 
can be seen that the function defined by (7) satisfies the requirement of pxiodici~>i 
over the large mesh and gives the correct r-I potential of interaction between noitr! 
charges provided the separation in both coordinates is less than or equal to 12. 
For greater separations the potential is incorrect, her-ice it is necessary to en-sure 
that the separation between stars is within the allowed limits. This is achieved Sy 
limiting the positions of the stars and the use of the potential to the bottom ieft-hand 
corner OF the large mesh, as mentioned above. The remaining three quarters #:1 
the mesh is, however. required as temporary storage during the potentiai calcuia- 
‘iron. 

An alternative way of visualizing the summation (7) is to consider the su::~ to 
extend over all the doubly infinite array of images. Then the selected interaction 
potential is equivalent to taking F cr; ; r j-i for distances less than Y = >I and ze;o 
fG1. distances greater than 17. If the stars are confined to a quarter of the system it is 
clear that there is no interaction with the images, all of whictr arc greater thaw 
3 mesh distances away. 

The choice of the self potential F,,, to be unity is somewhat arbitrary but IS 
consistent with the fact that the force between stars in the same cell is zero, hence 
there should be no change of potential for a separation ?ess than H. It is a&c a 
liecessary choice when certain interpolation procedures are used. in order to ensure 
that the self force on a star is zero. 

Since ali variables are doubly periodic outside the large mesh v+e can de&~ ~,he 
finite Fourier transform of any such mesh function.f2,, as 

with the inverse relation 

Introducing the transform of the interaction potentia! F into equation (7) one hat: 

and rearranging terms 
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The term in braces is the definition of the transform of nl*, hence 

(11) 

Comparing (11) with the definition of the Fourier transform one has the result 
that 

This is the finite convolution theorem applied to the convolution summation (7). 
It states that the finite Fourier transform of the convolution summation of two 
mesh functions is the product of their finite Fourier transforms. Here the potential 
is the convolution summation of the mass distribution with the interaction potential. 

Using this result the method of solution is as follows: 

(i) Write the function I?~,~ on a mesh and compute its Fourier transform pk,,? . 
pJe.r may overwrite F,,, . This calculation need be done once only before the main 
timestep loop is entered. Because of the symmetry of Fc,d only a finite cosine trans- 
formation need be used requiring the storage (n -t 1) x (12 i 1). 

(ii) At each timestep form r,$, on the bottom left-hand corner of the large 
312 x 2n mesh, zero the other three quarters of the mesh, and take the Fourier 
transform of the large mesh, &ti, . &Cal overwrites nzz,, . The large mesh is now in 
general all nonzero. 

(iii) Multiply GI~,~ by fik,I giving $:A& on the 2rz x 2n mesh. $12,~ overwrites Gz,& . 
(iv) Perform a double Fourier synthesis of I$:,~ on the (2~2 x 2n) mesh giving 

9’a,u . 99,a overwrites $,*,,, and is in general nonzero on all the (212 x 2n) mesh. 
The bottom left-hand corner contains the potential due to the masses initially given 
in the same region. The numbers on the remaining three quarters of the mesh are 
invalid, but this does not matter since there are no stars in this region to require a 
reference to the invalid potentials. 

A computer subroutine for obtaining the potential from a given mass distribution 
has been written for the CDC 6600 computer. This program, called POT3, is fully 
documented [18] and Table I gives the measured execution time for different sizes 
meshes both for a FORTRAN IV program and for one with the important depend- 
ent subroutine written in machine code using COMPASS assembly code. The 
FORTRAN version 2.1 compiler was used, run under the Langley Research 
Center SCOPE 3.0 operating system. With this compiler the convenience of 
programming in FORTRAN is seen to cost a factor of 3 to 4 in execution time. 
The total storage required is approximately 59 for an (n x r?) active mesh and the 
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TABLE I 

Co~pmm TIME REQUIRED TO SOLVE FOR THE POTENTIAL USING FKE POT3 S~SROOTIW 

active 
(II x n) 

mesh 

CDC 6600 CPU Sets 

COMPASS FORTRAN IV 

16 x 16 0.132 0.354 
32 x 32 0.494 1.524 
64 x 64 1.854 6.618 

128 x 128 1.542 28.108 

number of arithmetic operations is approximately 4Qn’(log, n + I). This agrees 
with the measured times if one takes 1.3 microseconds per operation, which is 
reasonable for the CDC 6600. We note that, except for an insensitive dependence 
on the logarithm, the number of operations is proportional :o the number of mesh 
points. 

Table II lists the computer times for the galaxy model when the Fourier transform 
method is used to obtain the potential and when coordinates of each star are packed 
into one computer word. 

TABLE II 

EXECUTION TINS FOR THE FOUFUER TRAIGFO~~M MODEL FOR 
DIFFEKENT MESHES AND NU~IBERS OF STARS. TIME IS IN CENTRAL PROCESSOR (CPU) Sxs, 

FOR A TIMESTEP WITHOUT CALCULATION OF CONSTANTS OF MonohT, OWTPU~ OR P~o~rn-.~t 

No. Stars lolooo” 50,OOOfl 200,000~ 50,00@ 

MESH 32 x 32 64 x 63 64 x 6: 128 x ?3S 
RHO’ 0.19 0.87 i3.16 3.96 
POT” 0.49 1 .s5 1.85 7.59 
ACCN” 0.51 2.83 30.68 7.14 
CYCLE’ 1.25 5.56 45.69 19.29 

u The mesh and all the stellar coordinates are stored in core storage. No disk is used. 
b Tine mesh is stored in core storage. The stellar coordinates are stored in disk. 
c Time to build up the mass distribution. 
d Time to solve for the potential. 
e Time to accelerate the stars. 
f Time for a timestep, sum cf (c), (d) and (e). 
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B. Summation Method 

In the summation method the potential is derived from the mass density by 
means of Eq. (1). To perform the summation directly requires the summation of 
(n + 1)” terms. For (n -t 1) = 100, (12 + 1)4 = IO* and the time required to 
obtain the potential becomes excessive. 

An approximate faster method to obtain the potential is illustrated in Fig. 1. 

- 
XIX x 

X X X x a.0 x x X 
x x x 

X 

- 

X 

- 

i 

x 1 

X 

X 

FIG. 1. illustration for the calculation of the potential by the summation method. 

First the density 771& for each cell is obtained. Next, for each cell a second density 
M& is obtained which consists of m& p 1~1s the density of the surrounding eight 
cells. The potential of a cell a, b is then obtained by summing the contribution of 
the surrounding eight cells plus the contribution of M& at the center of each of 
the larger cells, as indicated in Fig. 1. That is, 
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where 

The addition of the term ~2;~~ in Eq. (13) is equivaient to setting the self potent% 
equal to unity. The condition F,,, = 0 in (14) simply omits the Contributictn of 

I\& in the double summation of (13). The values of Fc--a,d--il are stored in an array 
and have to be calculated oniy once during a particular run. The indices c and d 
u-r the double summation increase in increments of 3 such that one of the vahtes sr^ 
n’ and c equals a and b, respectively, and the summation is over every third va?u.e 
of fwZd . 

For s = 60 the time required to obtain the potential from the density W& is 
six seconds on the Langley Research Center’s CDC 6600 with the program written 
in COMPASS assembly code. The time required for a FORTRAN iY version is 
increased by nearly a factor of 3. 

With Eq. (I 3) the number of operations is (11 f 1 j” {9 + (2 + 1 j2/9> and is reduced 
by almost one order of magnitude compared to the direct summation method. 

One could in principle extend the method to include a third class of cells contain- 
ing the mass of 8 1 small cells rnz b 
would then be (n +- 1)” { 17 + i 

(or 9 large cells, LW~,). The number of operations 
n + lj”/Sl), a reduction of nearly two orders of 

magnitude compared to the direct summation method. 

III. VARIATION OF MODEL PARAMETERS 

The effects of varying the model discretization parameters on the evolution of rhe 
disk are illustrated in Figs. 2 and 3. The time shown is in rotation periods. Fig. 2(aj 
shows the evolution of a cold disk of stars containing 50,000 stars. The poreetiat, 
for this case is obtained by the summation method. Fig. 3(a) shows the evofurion 
of an identical system but with the potential calculated by means of the Fo:urier 
transform technique. It can be seen that after a quarter rotation the summation 
method gives a finer structure for the condensations than the Fourier transform 
method. The distance between condensations in Fig. 2(a) is about one large ceil 
(3 x 3 small cells) and the condensations are within a one large cefi. Because of the 
approximation made by introducing the larger cells in the summation method, the 
interaction between masses separated by two (or more) cell dimensions is decreased. 
This effect explains the finer structure of the initial condensation in Fig. 3(a). A. 
comparison of Fig. 2(a) and Fig. 3(a) shows that after one-half rotation the overah 
structure of the condensations is the same for the two methods. Even after one 
rotation the results are very similar. One should note that since the systelm ir 
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(4 

t = 0.25 

(d) 

t = 0.25 t = 0.50 

FIG. 2. Elfects of varying the model discretization parameters on the evolution of the disk 
of stars. (a) Cold disk, 200 timesteps per rotation and with the potential obtained by the summation 
method on 60 x 60 array of cells. (b) Cold disk, 200 timesteps per rotation and with the potential 
obtained by the Fourier method on a 128 x 128 array of cells. (c) Disk with small initial velocity 
dispersion, 200 timesteps per rotation and with the potential obtained by the Fourier method 
on a 64 x 64 array of cells. (d) Same as (c) but with a 128 x 128 array of cells. Times are in 
rotation periods. 
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t = 0.25 

t = 0.25 

FIG. 3. Effecrs of varying the model discretization parameters on the evo;utior, of :te disk 
of stars. (a) Cold disk, 200 timesteps per rotation and wirb tbe potential obtaiced by the Fourier 
method on a 64 x 64 array of cells. (b) Repetition of (al with the cloud in cell method. (c) Repeti- 
tion of (a) with 400 timesteps per rotation. (d) Repetition of (a) with fmr times the au::~bz; of 
srars. Tj:mz, I, ir. rotation periods. 

violently urxtable, any small change in the method of camp-titation or initial ccndi- 
;ions will cause rather large deviation in the overall structure of the condensations 
which occur as the disk breaks up. 



320 HOHL AND HOCKNEY 

The effect of reducing the mesh size by a factor of two is shown in Fig. 2(b). 
The figure shows that on the 128 x 128 mesh the condensations are much finer 
than for the 64 X 64 case. This result is to be expected for the extreme case of an 
initially cold disk. Toomre 171 has shown that a cold disk of stars is unstable to any 
perturbations of arbitrarily small wavelengths. Since the smallest condensations 
possible in the present model are of the dimensions of a cell size, a decrease of the 
cell dimensions will allow smaller condensations to occur. It has been shown by 
Toomre [7] that the short wavelength modes are stabilized by the effects of velocity 
dispersion. The effect of changing the cell size should therefore be checked for an 
initial disk of stars with sufficiently large random velocities to stabilize modes of 
the order of a few cell sizes. The root mean square of the random velocity chosen 
was 17 percent of the circular velocity at the edge of the cold balanced disk, The 
resulting evolution for a 64 x 64 and a 128 x 128 mesh are shown in Figs. 2(c) 
and 2(d), respectively. The smaller mesh size results in a somewhat more defined 
structure but the overall evolution is the same for the two cases. Fig. 3(b) shows 
the effect of using the cloud in cell method 1161. Each of the 50,000 stars has the 
dimension of a cell and its mass is distributed among four cells in proportion to the 
fraction of particle area in a cell. The evolution displayed in Fig. 3(b) shows that 
the results are not significantly changed by the interpolation procedures introduced 
by the UC method of calculation. 

With the exception of the results shown in Fig. 3(c), all calculations were done 
with 200 timesteps per rotation. The evolution shown in Fig. 3(c) is for 400 timesteps 
per rotation. For the first one-half rotation the evolution is the same as that of Fig. 
3(a). After one rotation the number of condensations for the two cases is the same, 
but the relative positions are changed somewhat. It should be noted that for all 
cases in Figs. 2 and 3 the initial pseudo-random positions are identical so that the 
perturbations caused by them are the same for all cases. 

Figure 3(d) shows the effect of increasing the number of stars to 200,000. This 
is done by taking the position of each star in the 50,000 star case and distribute in 
the neighborhood of this point 4 stars-actually within &H/4. Thus the perturba- 
tions caused by the initial positions of the stars should be similar to that of the 
previous cases. The results shown in Fig. 3(d) show that increasing the number of 
stars has very little effect on the evolution of the system. 

IV. BREAK-UP AND FINAL STATEOF THE Drsn 

As predicted by Toomre [7] the cold disk of stars is found to be unstable. Figure 
4 shows the evolution of a balanced, uniformly rotating cold disk up to 1.1 
rotations. Since the growth-time of a disturbance is approximately proportional 
to the square root of its wavelength, the fast appearance of the small scale conden- 
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t = 0.6 t = 0.7 t =0.8 

RG. 4. Break up of an initially uniformly rotatiny and baianced cold disk of 50,032 stm. 
Time, r; in rotation periods. 

satinns is to be expected. After one-haif rotation the main condensation appears 
E&e a circular ring. As the evolution continues the disk breaks up into fooiir to fi\e 
smaller clusters. 

Figure 5 shows the long-term evolution of a disk of stars for two difIerent in2&1 
conditions, For the previous cases the disk of stars was given an Initial solid-body 
rotation as obtained from the analytic expression. For the system shown in Fig. 
5(a) the rotational velocity of a particular star was obtained by firsi: calcul.ati:~g the 
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b) 

t=o 

., _ 

t =4.0 

t =4.0 

., I . . ‘, . 
;:..,... .;‘: -:. _- 

.._ 

; 

: 

::: .: : .-,. -- 

t = 5.0 

FIG. 5. Long-terms evolution of a disk of stars. (a) Evolution of an initially cold disk of stars 
with a radius equal to 16. (b) Evolution of a disk of stars with a small initial velocity dispersion 
and with an initial radius equal to 12. Time, I, in rotation periods. 

gravitational field by the cell method along one given radius and by then balancing 
this field by the centrifugal force. This results in a small differential rotation in the 
initial conditions. 

Fig. 5(a) shows that after one rotation the disk has condensed into four separate 
clusters, When the trajectory of a star in one of the condensations is plotted it is 
found that the star moves back and forth in the potential well set up by the conden- 
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sations. Thus a pressure has built up to keep the stars from condensing any further. 
As time increases all the condensations combine into one cluster. In some cases a 
small cluster may leave the grid and disperse since outside the grid region the stars 
no longer interact among themselves. After five rotations an appreciable fraction 
of the stars has left the grid region. This loss does not occur symmetricailiy s~,rf 
results in a drift of the center of gravity of the system downwards. 

Fig. 5(b) shows the long-term evolution of a system with 314 rhe radius of the 
previous cases. The balanced system has an initial solid-body rotation and a velocity 
dispersion equal to 4 percent of the circular velocity ar the edge of the cold baianced 
disk. Because of the effects of the initial velocity dispersion the disk requires a Ionger 
time to break up into separate clusters. After two rotations there is one rather large 
cluster and four to five small clusters. Again, after five rotations there remains only 
one central cluster. By this time the increased central condensation has stabilized 
any large scale modes and the increased velocity dispersion has stabilized ehe sharp: 
iYavelcngths. 

SUMMARY 

A computer model for investigating the evolution of isolated disks of stars is 
described. The evolution of an initially balanced uniformly rotating disk of stars is 
calculated. In agreement with theoretical predictions the disk is found to be unstable 
and it breaks up into smaller clusters of stars. It is found that varying the discretiza- 
tion parameters has little effect on the evolution. of the system. 
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